论文标题

地球物理射线追踪中浆果曲率的表现

Manifestation of Berry curvature in geophysical ray tracing

论文作者

Perez, Nicolas, Delplace, Pierre, Venaille, Antoine

论文摘要

几何阶段,例如浆果阶段,已被证明是理解许多物理现象的强大概念,从福柯摆的进攻到量子厅效应以及拓扑绝缘子的存在。浆果相是由名为Berry曲率的数量生成的,描述了波浪关系的局部几何形状,并已知出现在多组分波数据包的运动方程中。在凝结物质,光学和冷原子物理学中,已经观察到了媒介场的射线传播中这种几何贡献。在这里,我们使用一种与矢量敏捷 - kramer-brillouin(WKB)ansatz的变异方法来得出地球物理波中的射线示踪方程,并揭示了浆果曲率的贡献。我们详细介绍了浅水波包的情况,并提出了对赤道振荡和中纬度区域的射线弯曲的新解释。我们的结果表明,通过预测庞加莱波数据包的更大的向东速度,与射线追踪的教科书标量方法不匹配。这项工作启发了波浪极化的几何形状在浅水模型之外的各种地球物理和天体物理流体波中的作用。

Geometrical phases, such as the Berry phase, have proven to be powerful concepts to understand numerous physical phenomena, from the precession of the Foucault pendulum to the quantum Hall effect and the existence of topological insulators. The Berry phase is generated by a quantity named Berry curvature, describing the local geometry of wave polarization relations and known to appear in the equations of motion of multi-component wave packets. Such a geometrical contribution in ray propagation of vectorial fields has been observed in condensed matter, optics and cold atoms physics. Here, we use a variational method with a vectorial Wentzel-Kramers-Brillouin (WKB) ansatz to derive ray tracing equations in geophysical waves and reveal the contribution of Berry curvature. We detail the case of shallow water wave packets and propose a new interpretation to the equatorial oscillation and the bending of rays in mid-latitude area. Our result shows a mismatch with the textbook scalar approach for ray tracing, by predicting a larger eastward velocity for Poincaré wave packets. This work enlightens the role of wave polarization's geometry in various geophysical and astrophysical fluid waves, beyond the shallow water model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源