论文标题
cartan-hartogs域的符号几何形状
Symplectic geometry of Cartan-Hartogs domains
论文作者
论文摘要
本文从符合性的角度研究了cartan-hartogs域的几何形状。受到紧凑型和非压极性对称空间之间的二元性的启发,我们构建了cartan-hartogs域的双重对应物,并为cartan-hartogs及其双重表达了全球darboux坐标的明确表达。此外,我们计算它们的象征能力,并表明cartan-hartogs在且仅当它降低为复杂的双曲线空间时就承认了偶性二元性。
This paper studies the geometry of Cartan-Hartogs domains from the symplectic point of view. Inspired by duality between compact and noncompact Hermitian symmetric spaces, we construct a dual counterpart of Cartan-Hartogs domains and give explicit expression of global Darboux coordinates for both Cartan-Hartogs and their dual. Further, we compute their symplectic capacity and show that a Cartan-Hartogs admits a symplectic duality if and only if it reduces to be a complex hyperbolic space.