论文标题

滑道:学习在具有长期记忆的未知动态系统中预测

SLIP: Learning to Predict in Unknown Dynamical Systems with Long-Term Memory

论文作者

Rashidinejad, Paria, Jiao, Jiantao, Russell, Stuart

论文摘要

我们提出了一种有效且实用的(多项式时间)算法,用于在随机噪声下未知和部分观察到的线性动力学系统(LDS)中的在线预测。当已知系统参数时,最佳线性预测变量是卡尔曼滤波器。但是,在重要类别的LDS中,现有预测模型的性能较差,而LDS仅稳定并显示长期预测记忆。我们通过通过光谱方法和进行紧密的凸松弛度来界定卡尔曼滤波器模型的广义kolmogorov宽度来解决这个问题。我们提供有限样本的分析,表明我们的算法在事后与Kalman Filter竞争,只有对数遗憾。我们的遗憾分析依赖于门德尔森的小球方法,在没有集中度,界限或指数遗忘假设的情况下提供了急剧的错误界限。我们还提供了实验结果,表明我们的算法优于最先进的方法。我们的理论和实验结果阐明了有效的条件,可能会从部分观察到的数据中近似正确的(PAC)学习卡尔曼滤波器。

We present an efficient and practical (polynomial time) algorithm for online prediction in unknown and partially observed linear dynamical systems (LDS) under stochastic noise. When the system parameters are known, the optimal linear predictor is the Kalman filter. However, the performance of existing predictive models is poor in important classes of LDS that are only marginally stable and exhibit long-term forecast memory. We tackle this problem through bounding the generalized Kolmogorov width of the Kalman filter model by spectral methods and conducting tight convex relaxation. We provide a finite-sample analysis, showing that our algorithm competes with Kalman filter in hindsight with only logarithmic regret. Our regret analysis relies on Mendelson's small-ball method, providing sharp error bounds without concentration, boundedness, or exponential forgetting assumptions. We also give experimental results demonstrating that our algorithm outperforms state-of-the-art methods. Our theoretical and experimental results shed light on the conditions required for efficient probably approximately correct (PAC) learning of the Kalman filter from partially observed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源