论文标题
从太空监视战争破坏:一种机器学习方法
Monitoring War Destruction from Space: A Machine Learning Approach
论文作者
论文摘要
有关冲突区域建筑破坏的现有数据依赖目击者报告或手动检测,这通常使其稀缺,不完整且可能存在偏见。缺乏可靠的数据对媒体报告,人道主义救济工作,人权监测,重建计划以及暴力冲突的学术研究施加了严重的限制。本文介绍了一种使用深度学习技术与数据扩展以扩展训练样本相结合的自动化方法,用于测量高分辨率卫星图像的破坏方法。我们将这种方法应用于叙利亚内战,并重建了全国主要城市损害的演变。该方法允许以前所未有的范围,分辨率和频率生成破坏数据(仅受可用卫星图像的限制),这可以果断地减轻数据限制。
Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep learning techniques combined with data augmentation to expand training samples. We apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. The approach allows generating destruction data with unprecedented scope, resolution, and frequency - only limited by the available satellite imagery - which can alleviate data limitations decisively.