论文标题
量子kolmogorov-sinai熵和佩辛关系
Quantum Kolmogorov-Sinai entropy and Pesin relation
论文作者
论文摘要
我们讨论一个量子kolmogorov-sinai熵,该熵定义为每单位时间的熵产生,这是由于将系统耦合到弱辅助浴中。我们获得的表达式是完全量子的,但是要求系统使Ehrenfest与相关时间尺度之间存在分离。我们表明,它们在半经典限制中减少到经典定义,这是一个分离所保持的一个实例。我们在此熵与描述相位空间扩展的基质的阳性特征值之和之间显示了量子(Pesin)关系。熵随时间增长的情况是可能的。
We discuss a quantum Kolmogorov-Sinai entropy defined as the entropy production per unit time resulting from coupling the system to a weak, auxiliary bath. The expressions we obtain are fully quantum, but require that the system is such that there is a separation between the Ehrenfest and the correlation timescales. We show that they reduce to the classical definition in the semiclassical limit, one instance where this separation holds. We show a quantum (Pesin) relation between this entropy and the sum of positive eigenvalues of a matrix describing phase-space expansion. Generalizations to the case where entropy grows sublinearly with time are possible.