论文标题

关于过度拟合和不足的信息理论观点

An Information-Theoretic Perspective on Overfitting and Underfitting

论文作者

Bashir, Daniel, Montanez, George D., Sehra, Sonia, Segura, Pedro Sandoval, Lauw, Julius

论文摘要

我们提出了一个信息理论框架,以理解机器学习中过度拟合和不足的信息,并证明正式的不确定性确定任意分类算法是否会过度贴上数据集。通过从数据集传输到模型的信息测量算法容量,我们考虑算法容量和数据集之间的不匹配,以提供签名,以适用于模型可以过度拟合或低于数据集的何时。我们介绍了上限算法能力,在用于机器学习的算法搜索框架中建立了与数量的关系,并将我们的工作与最近的信息理论方法联系起来。

We present an information-theoretic framework for understanding overfitting and underfitting in machine learning and prove the formal undecidability of determining whether an arbitrary classification algorithm will overfit a dataset. Measuring algorithm capacity via the information transferred from datasets to models, we consider mismatches between algorithm capacities and datasets to provide a signature for when a model can overfit or underfit a dataset. We present results upper-bounding algorithm capacity, establish its relationship to quantities in the algorithmic search framework for machine learning, and relate our work to recent information-theoretic approaches to generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源