论文标题
用异质和缺少数据的药物过量药物建模
Point Process Modeling of Drug Overdoses with Heterogeneous and Missing Data
论文作者
论文摘要
在过去的十年中,美国的阿片类药物过量率有所提高,并反映了重大的公共卫生危机。毒品和阿片类热点的建模和预测,其中很大比例的事件属于一小部分时空,可以帮助更好地关注有限的社会和卫生服务。在这项工作中,我们提出了用于药物过量聚类的时空点过程模型。该模型中的数据输入来自两个异构来源:1)大量的紧急医疗服务(EMS)记录包含位置和时间的记录,但没有关于非致命过量过量的类型和2)来自死亡的位置的致命过量毒理学报告,这些毒理学报告是在死亡时期含有毒理学的位置和高维度信息的高维信息的信息。我们首先将非负基质分解用于聚类毒理学报告为药物过量类别,然后我们开发了一种用于整合两个异质数据集的EM算法,其中推断出与EMS数据相对应的与过量类别相对应的标记,并将大量EMS数据用于更准确地预测药物过量药物过量的药物过量死亡死亡量。我们将算法应用于印第安纳波利斯的药物过量数据,表明在综合数据上定义的点过程优于仅使用同质EMS(AUC改善.72至.8)或验尸官数据(AUC改善.81至.85)的点过程。背景速率也可能有助于聚类。我们发现药物和阿片类药物过量死亡表现出明显的激发,分支比率从.72到.98。
Opioid overdose rates have increased in the United States over the past decade and reflect a major public health crisis. Modeling and prediction of drug and opioid hotspots, where a high percentage of events fall in a small percentage of space-time, could help better focus limited social and health services. In this work we present a spatial-temporal point process model for drug overdose clustering. The data input into the model comes from two heterogeneous sources: 1) high volume emergency medical calls for service (EMS) records containing location and time, but no information on the type of non-fatal overdose and 2) fatal overdose toxicology reports from the coroner containing location and high-dimensional information from the toxicology screen on the drugs present at the time of death. We first use non-negative matrix factorization to cluster toxicology reports into drug overdose categories and we then develop an EM algorithm for integrating the two heterogeneous data sets, where the mark corresponding to overdose category is inferred for the EMS data and the high volume EMS data is used to more accurately predict drug overdose death hotspots. We apply the algorithm to drug overdose data from Indianapolis, showing that the point process defined on the integrated data outperforms point processes that use only homogeneous EMS (AUC improvement .72 to .8) or coroner data (AUC improvement .81 to .85).We also investigate the extent to which overdoses are contagious, as a function of the type of overdose, while controlling for exogenous fluctuations in the background rate that might also contribute to clustering. We find that drug and opioid overdose deaths exhibit significant excitation, with branching ratio ranging from .72 to .98.