论文标题
带有内存的AGN通道反馈能力的新公式:时间域足够的统计方法
New Formulas of Feedback Capacity for AGN Channels with Memory: A Time-Domain Sufficient Statistic Approach
论文作者
论文摘要
在最近的论文[1]中,通过应用程序示例显示了盖子和pombra [2]“ $ n $块或变速箱的表征”,“反馈容量公式,加性高斯噪声(AGN)通道,是文献中很多混乱的主题,结果是多余的,结果是多余的。本文的主要目的是阐明混乱的要点并消除任何进一步的歧义。本文的第一部分应用时间域方法,以首次得出覆盖范围的等效顺序表征,以及由非平稳性和非高斯高斯噪声驱动的AGN通道的反馈能力的表征。新的等效顺序特征的最佳通道输入过程表示为足够统计和高斯正交创新过程的功能。从新的表示中得出,与文献中出现的结果相反,覆盖率和pombra $ n $ block容量公式表示为高斯系统过滤理论的两个广义矩阵差异方程(DRE)的功能。在本文的第二部分中,$ n $块反馈容量公式的渐近极限的存在与两种广义DRE的溶液的收敛性质相等。此外,当最佳输入分布是时间不变的,但不一定是固定的时,确定了存在渐近且不稳定的高斯噪声的必要条件,即渐近且不稳定的高斯噪声。本文包含了一个深入的分析,其中包含了特定技术问题的示例,这些问题在过去的文献中被忽略了[3-7],研究了[2]的AGN渠道,以构成静止的噪声。
In the recent paper [1] it is shown, via an application example, that the Cover and Pombra [2] "characterization of the $n-$block or transmission" feedback capacity formula, of additive Gaussian noise (AGN) channels, is the subject of much confusion in the literature, with redundant incorrect results. The main objective of this paper is to clarify the main points of confusion and remove any further ambiguity. The first part of the paper applies time-domain methods, to derive for a first time, equivalent sequential characterizations of the Cover and Pombra characterization of feedback capacity of AGN channels driven by nonstationary and nonergodic Gaussian noise. The optimal channel input processes of the new equivalent sequential characterizations are expressed as functionals of a sufficient statistic and a Gaussian orthogonal innovations process. From the new representations follows that the Cover and Pombra $n-$block capacity formula is expressed as a functional of two generalized matrix difference Riccati equations (DRE) of filtering theory of Gaussian systems, contrary to results that appeared in the literature. In the second part of the paper the existence of the asymptotic limit of the $n-$block feedback capacity formula is shown to be equivalent to the convergence properties of solutions of the two generalized DREs. Further, necessary and or sufficient conditions are identified for existence of the asymptotic limits, for stable and unstable Gaussian noise, when the optimal input distributions are time-invariant, but not necessarily stationary. The paper contains an in depth analysis, with examples, of the specific technical issues, which are overlooked in past literature [3-7], that studied the AGN channel of [2], for stationary noises.