论文标题
Dirichlet系列的整数缺少数字
Dirichlet series of integers with missing digits
论文作者
论文摘要
对于某些序列$ a $ a $的正整数,缺少$ g $ - adic数字,dirichlet系列$ f_a(s)= \ sum_ {a \ in} a^{ - s} $ in}计算数字$σ_C$。这概括并加强了肯普纳的经典定理,这些定理是关于缺少十进制数字的整数序列总和的收敛性的。
For certain sequences $A$ of positive integers with missing $g$-adic digits, the Dirichlet series $F_A(s) = \sum_{a\in A} a^{-s}$ has abscissa of convergence $σ_c < 1$. The number $σ_c$ is computed. This generalizes and strengthens a classical theorem of Kempner on the convergence of the sum of the reciprocals of a sequence of integers with missing decimal digits.