论文标题

全身MPC和在线步态序列生成,用于轮廓机器人

Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots

论文作者

Bjelonic, Marko, Grandia, Ruben, Harley, Oliver, Galliard, Cla, Zimmermann, Samuel, Hutter, Marco

论文摘要

我们的论文提出了一个模型预测控制器作为单任务公式,同时优化了车轮和躯干运动。这种在线联合速度和地面反作用力优化整合了轮式四足动物的动力学模型。它定义了单个刚体动力学以及机器人的运动学,同时将车轮视为移动的接地触点。通过这种方法,我们可以准确捕获机器人的滚动约束和动态,从而无需不必要的运动启发式方法就可以自动发现混合动作。通过对机器人的全身变量的同时优化,该配方的一般性可以提供一组参数,并使在线步态序列适应成为可能。通过运动腿实用程序自动找到了多个步态序列,而无需预定义的接触和提升时间,从而将运输成本降低了85%。我们的实验表明,在具有挑战性的室内和室外环境中,在四足动物的机器人上进行动态运动。该论文的发现有助于评估分解的,即对车轮和躯干运动的顺序优化,以及具有新数量的单任务运动策划者的预测误差,该误差描述了恢复的地平线计划者可以预测机器人未来状态的能力。为此,我们报告使用我们提出的单项任务方法报告了高达71%的改善,使快速的运动可行,并揭示了带轮腿的机器人的全部潜力。

Our paper proposes a model predictive controller as a single-task formulation that simultaneously optimizes wheel and torso motions. This online joint velocity and ground reaction force optimization integrates a kinodynamic model of a wheeled quadrupedal robot. It defines the single rigid body dynamics along with the robot's kinematics while treating the wheels as moving ground contacts. With this approach, we can accurately capture the robot's rolling constraint and dynamics, enabling automatic discovery of hybrid maneuvers without needless motion heuristics. The formulation's generality through the simultaneous optimization over the robot's whole-body variables allows for a single set of parameters and makes online gait sequence adaptation possible. Aperiodic gait sequences are automatically found through kinematic leg utilities without the need for predefined contact and lift-off timings, reducing the cost of transport by up to 85%. Our experiments demonstrate dynamic motions on a quadrupedal robot with non-steerable wheels in challenging indoor and outdoor environments. The paper's findings contribute to evaluating a decomposed, i.e., sequential optimization of wheel and torso motion, and single-task motion planner with a novel quantity, the prediction error, which describes how well a receding horizon planner can predict the robot's future state. To this end, we report an improvement of up to 71% using our proposed single-task approach, making fast locomotion feasible and revealing wheeled-legged robots' full potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源