论文标题

电容的空间聚类,具有多个约束和属性

Capacitated spatial clustering with multiple constraints and attributes

论文作者

Ruha, Leena, Lähderanta, Tero, Lovén, Lauri, Kuismin, Markku, Leppänen, Teemu, Riekki, Jukka, Sillanpää, Mikko J.

论文摘要

电容的空间聚类是一种无监督的机器学习方法,通常用于解决压缩,分类,逻辑优化和基础架构优化方面的问题。根据手头的应用,聚类可能需要大量扩展。 在本文中,我们提出了许多新颖的扩展包装,这是一种新型的电容空间聚类方法。这些扩展是聚类中心,离群值和非空间属性的搬迁和位置偏好。包装的强度是它可以共同考虑所有这些扩展。我们在Edge Computing服务器位置中为具有不同设置的城市区域的Edge Computing服务器放置的真实示例演示了有用性包,我们会考虑在其中考虑离群值,中心位置和非空间属性。通过有关空间接近性和属性相似性的摘要统计来评估不同的设置。结果,簇的相似性最多可提高53%,而近端仅降低了18%。在替代场景中,邻近和相似性都得到了改善。事实证明,不同的扩展名提供了一种宝贵的方法,可以将非空间信息包括在群集分析中,并获得更好的总体接近性和相似性。此外,我们提供易于使用的软件工具(RPACK)用于进行聚类分析。

Capacitated spatial clustering, a type of unsupervised machine learning method, is often used to tackle problems in compressing, classifying, logistic optimization and infrastructure optimization. Depending on the application at hand, a wide set of extensions may be necessary in clustering. In this article we propose a number of novel extensions to PACK that is a novel capacitated spatial clustering method. These extensions are relocation and location preference of cluster centers, outliers, and non-spatial attributes. The strength of PACK is that it can consider all of these extensions jointly. We demonstrate the usefulness PACK with a real world example in edge computing server placement for a city region with various different set ups, where we take into consideration outliers, center placement, and non-spatial attributes. Different setups are evaluated with summary statistics on spatial proximity and attribute similarity. As a result, the similarity of the clusters was improved at best by 53%, while simultaneously the proximity degraded only 18%. In alternate scenarios, both proximity and similarity were improved. The different extensions proved to provide a valuable way to include non-spatial information into the cluster analysis, and attain better overall proximity and similarity. Furthermore, we provide easy-to-use software tools (rpack) for conducting clustering analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源