论文标题
使用生成对抗网络的程序3D地形生成
Procedural 3D Terrain Generation using Generative Adversarial Networks
论文作者
论文摘要
程序3D地形的生成已成为开放世界游戏的必要性,因为它可以通过功能无限的不同领域提供无限的内容,供玩家探索。在我们的方法中,我们使用生成的对抗网络(GAN)根据卫星或无人机捕获的远程感知的景观图像的分布来产生现实的3D环境。我们的任务包括合成一个随机但合理的RGB卫星图像,并以3D点云的形式生成相应的高度图,该图将用作景观的适当网格。在第一步中,我们利用了一个经过卫星图像训练的gan,这些卫星图像可以学习数据集的分布,从而创建新型卫星图像。在第二部分中,我们需要从RGB图像到数字高程模型(DEM)的一对一映射。我们部署有条件的生成对抗网络(CGAN),该网络是图像到图像转换的最新方法,以生成一个可靠的高度图,以适用于第一个模型的每个随机生成的图像。结合了生成的DEM和RGB图像,我们能够构建由合理的高度分布和着色组成的3D风景,与训练过程中提供的遥感景观有关。
Procedural 3D Terrain generation has become a necessity in open world games, as it can provide unlimited content, through a functionally infinite number of different areas, for players to explore. In our approach, we use Generative Adversarial Networks (GAN) to yield realistic 3D environments based on the distribution of remotely sensed images of landscapes, captured by satellites or drones. Our task consists of synthesizing a random but plausible RGB satellite image and generating a corresponding Height Map in the form of a 3D point cloud that will serve as an appropriate mesh of the landscape. For the first step, we utilize a GAN trained with satellite images that manages to learn the distribution of the dataset, creating novel satellite images. For the second part, we need a one-to-one mapping from RGB images to Digital Elevation Models (DEM). We deploy a Conditional Generative Adversarial network (CGAN), which is the state-of-the-art approach to image-to-image translation, to generate a plausible height map for every randomly generated image of the first model. Combining the generated DEM and RGB image, we are able to construct 3D scenery consisting of a plausible height distribution and colorization, in relation to the remotely sensed landscapes provided during training.