论文标题
与图形卷积神经网络的时间协作过滤
Temporal Collaborative Filtering with Graph Convolutional Neural Networks
论文作者
论文摘要
时间协作过滤(TCF)方法旨在建模推荐系统背后的非静态方面,例如用户偏好和项目周围的社会趋势的动态。最先进的TCF方法采用经常性神经网络(RNN)来建模此类方面。这些方法部署基于基于矩阵的基于基于矩阵的方法(基于MF)的方法来学习用户和项目表示。最近,基于图形的神经网络(基于GNN)的方法在提供非颞CF设置中基于MF的传统方法的准确建议方面表现出了提高的性能。在此激励的情况下,我们提出了一种新型的TCF方法,该方法利用GNN来学习用户和项目表示,并将RNNS用于建模其时间动态。这种方法的挑战在于数据稀疏性的增加,这会对获得有意义的质量表示形式产生负面影响。为了克服这一挑战,我们使用一组观察到的相互作用在每个时间步骤中训练GNN模型。关于现实世界数据的全面实验表明,我们方法在几种最新的时间和非时空CF模型上获得的性能提高了。
Temporal collaborative filtering (TCF) methods aim at modelling non-static aspects behind recommender systems, such as the dynamics in users' preferences and social trends around items. State-of-the-art TCF methods employ recurrent neural networks (RNNs) to model such aspects. These methods deploy matrix-factorization-based (MF-based) approaches to learn the user and item representations. Recently, graph-neural-network-based (GNN-based) approaches have shown improved performance in providing accurate recommendations over traditional MF-based approaches in non-temporal CF settings. Motivated by this, we propose a novel TCF method that leverages GNNs to learn user and item representations, and RNNs to model their temporal dynamics. A challenge with this method lies in the increased data sparsity, which negatively impacts obtaining meaningful quality representations with GNNs. To overcome this challenge, we train a GNN model at each time step using a set of observed interactions accumulated time-wise. Comprehensive experiments on real-world data show the improved performance obtained by our method over several state-of-the-art temporal and non-temporal CF models.