论文标题
在不变等级上,$ \ mathbb {p}^2 $上的两个向量捆绑包
On invariant rank two vector bundles on $\mathbb{P}^2$
论文作者
论文摘要
在本文中,我们表征了$ \ mathbb {p}^2 $上的等级两个向量捆绑包,它们是在抛物线核心子组的动作下不变的,$ g_p:= \ mathrm {stab} _p(\ mathrm {\ mathrm {pgl}(3)(3)) $ g_l:= \ mathrm {stab} _l(\ mathrm {pgl}(3))$修复一行时,当$ p \ in l $中时,borel子组$ \ mathbf {b} = g_p \ cap g_p \ cap g_l $ of $ \ cap g_l $ of $ \ mathrm {pglm {pglm {pgl} $ {3)$。此外,我们证明,不变性引起的跳跃基因座的几何配置并不是不变性本身的表征。确实,我们发现无限家庭几乎是统一但几乎均匀的。
In this paper we characterize the rank two vector bundles on $\mathbb{P}^2$ which are invariant under the actions of the parabolic subgroups $G_p:=\mathrm{Stab}_p(\mathrm{PGL}(3))$ fixing a point in the projective plane, $G_L:=\mathrm{Stab}_L(\mathrm{PGL}(3))$ fixing a line, and when $p\in L$, the Borel subgroup $\mathbf{B} = G_p \cap G_L$ of $\mathrm{PGL}(3)$. Moreover, we prove that the geometrical configuration of the jumping locus induced by the invariance does not, on the other hand, characterize the invariance itself. Indeed, we find infinite families that are almost uniform but not almost homogeneous.