论文标题

建模大气数据和识别动态:空气污染物的时间数据驱动建模

Modeling Atmospheric Data and Identifying Dynamics: Temporal Data-Driven Modeling of Air Pollutants

论文作者

Rubio-Herrero, Javier, Marrero, Carlos Ortiz, Fan, Wai-Tong Louis

论文摘要

随着深度学习的出现,大气建模最近经历了激增。然而,这些模型中的大多数都可以预测遵循数据驱动的方法,其中控制其行为和关系的物理定律仍然隐藏了。在整个马德里的各个站点每小时收集的现实世界空气质量数据的帮助下,我们使用数据驱动的技术提出了一种经验方法,该技术具有以下目标:(1)通过稀疏的非线性动态(SINDY)稀疏识别普通微分方程(SINDY)的层状系统,以模拟造物群体及其超过时间的变化; (2)使用稳定性分析评估模型的性能和局限性; (3)重建未在某些站点使用延迟坐标嵌入结果测量的化学污染物的时间序列。我们的结果表明,Akaike的信息标准可以很好地与最佳子集回归结合使用,从而在稀疏性和拟合度之间找到平衡。我们还发现,由于所研究的化学系统的复杂性,识别该系统在更长的时间内需要更高水平的数据过滤和平滑。重建的普通微分方程(ODE)的稳定性分析表明,超过一半的物理相关临界点是鞍点,这表明该系统即使在所有环境条件随着时间的时间持续不变的理想化假设下,系统也是不稳定的。

Atmospheric modeling has recently experienced a surge with the advent of deep learning. Most of these models, however, predict concentrations of pollutants following a data-driven approach in which the physical laws that govern their behaviors and relationships remain hidden. With the aid of real-world air quality data collected hourly in different stations throughout Madrid, we present an empirical approach using data-driven techniques with the following goals: (1) Find parsimonious systems of ordinary differential equations via sparse identification of nonlinear dynamics (SINDy) that model the concentration of pollutants and their changes over time; (2) assess the performance and limitations of our models using stability analysis; (3) reconstruct the time series of chemical pollutants not measured in certain stations using delay coordinate embedding results. Our results show that Akaike's Information Criterion can work well in conjunction with best subset regression as to find an equilibrium between sparsity and goodness of fit. We also find that, due to the complexity of the chemical system under study, identifying the dynamics of this system over longer periods of time require higher levels of data filtering and smoothing. Stability analysis for the reconstructed ordinary differential equations (ODEs) reveals that more than half of the physically relevant critical points are saddle points, suggesting that the system is unstable even under the idealized assumption that all environmental conditions are constant over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源