论文标题
带有灰尘成分的重力蛋白盘。 iv。光盘外边缘,光谱指数和不透明度差距
Gravitoviscous Protoplanetary Discs with a Dust Component. IV. Disc Outer Edges, Spectral Indices, and Opacity Gaps
论文作者
论文摘要
行星形成的关键初步步骤是将微米大小的灰尘集成到宏观骨料中。该阶段可能很早就发生在原始盘形成期间,其特征是活性气体动力学。我们提出了原恒星/原球盘长期演变的数值模拟,其中包括在薄盘极限内具有自我重力的气体动力学,以及由于凝结,碎片化和通过气体漂移而导致的二分散粉尘粒的演变。我们表明,向外围的晶粒尺寸减小导致灰尘毫米发射中的尖锐外边缘,这是通过尘埃不透明系数的下降而不是粉尘表面密度变化来解释的。这些可见的外边缘位于平均晶粒尺寸$ \λ/2π$的位置,其中$λ$是观测波长,因此,如果灰尘尺寸向外降低,则盘通常在更长的波长上看起来更紧凑。这允许一个简单的食谱,用于重建圆盘外区域中的谷物大小。如果晶粒尺寸未达到某些波长的$λ/2π$,则圆盘可能看起来更大。圆盘可见尺寸在头百万年度在非单调的情况下进化,并且与灰尘和气体物理大小不同。我们将模型与有关气体和灰尘盘大小,远红外通量以及狼疮中原球盘的光谱指数的最新观察数据进行了比较。我们还表明,径向方向上晶粒尺寸的非单调变化可能会导致波长依赖性的不透明度间隙,这与灰尘密度分布中的任何物理间隙无关。
The crucial initial step in planet formation is the agglomeration of micron-sized dust into macroscopic aggregates. This phase is likely to happen very early during the protostellar disc formation, which is characterised by active gas dynamics. We present numerical simulations of protostellar/protoplanetary disc long-term evolution, which includes gas dynamics with self-gravity in the thin-disc limit, and bidisperse dust grain evolution due to coagulation, fragmentation, and drift through the gas. We show that the decrease of the grain size to the disc periphery leads to sharp outer edges in dust millimetre emission, which are explained by a drop in dust opacity coefficient rather than by dust surface density variations. These visible outer edges are at the location where average grain size $\approx λ/2π$, where $λ$ is the observational wavelength, so discs typically look more compact at longer wavelengths if dust size decreases outwards. This allows a simple recipe for reconstructing grain sizes in disc outer regions. Discs may look larger at longer wavelengths if grain size does not reach $λ/2π$ for some wavelength. Disc visible sizes evolve non-monotonically over the first million years and differ from dust and gas physical sizes by factor of a few. We compare our model with recent observation data on gas and dust disc sizes, far-infrared fluxes and spectral indices of protoplanetary discs in Lupus. We also show that non-monotonic variations of the grain size in radial direction can cause wavelength-dependent opacity gaps, which are not associated with any physical gaps in the dust density distribution.