论文标题

Bose-Einstein冷凝水的功能理论

Functional Theory for Bose-Einstein Condensates

论文作者

Liebert, Julia, Schilling, Christian

论文摘要

一颗粒子还原密度基质功能理论可能是描述Bose-Einstein冷凝物的理想方法。即它通过简单的单粒子还原密度矩阵代替了宏观复杂的波函数,因此可以直接访问凝结程度,并且仍然以精确的方式恢复量子相关性。我们最终通过得出一般均匀的bose-内施泰因与任意成对相互作用的一般均匀的bose-内施泰因来启动和建立这种新颖的理论。最重要的是,成功的推导需要对Bogoliubov理论进行粒子数的修改以及功能理论的共同相难的解决方案。然后,我们在几种均质系统(例如均匀的玻色气体和Bose-Hubbard模型)中说明了这种新颖的方法。值得注意的是,$ \ Mathcal {f} $的一般形式揭示了存在通用的Bose-Einstein凝结力,这为量子消耗提供了一种替代性,更基本的解释。

One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $\mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $\mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源