论文标题
辛普森过滤和操作层猜想
Simpson Filtration and Oper Stratum Conjecture
论文作者
论文摘要
在本文中,我们证明,对于De Rham Moduli空间的操作分层$ M _ {\ Mathrm {dr}}(X,R)$,封闭的操作层是尺寸$ r^2(g-1)+g+1 $的独特最小层,由且浓密的层次构成了iS iS iS-Maxim septim bundum bund bund bunding bunding bunding bund bund bund bund bund bund,bundens+g+g+g+1 $。
In this paper, we prove that for the oper stratification of the de Rham moduli space $M_{\mathrm{dR}}(X,r)$, the closed oper stratum is the unique minimal stratum with dimension $r^2(g-1)+g+1$, and the open dense stratum consisting of irreducible flat bundles with stable underlying vector bundles is the unique maximal stratum.