论文标题
使用贝叶斯优化的CNC加工中心的模型预测控制器的鲁棒参数化
Robust Parametrization of a Model Predictive Controller for a CNC Machining Center Using Bayesian Optimization
论文作者
论文摘要
控制算法(例如模型预测控制(MPC)和状态估计器)依赖于许多不同的参数。闭环的性能通常取决于这些参数的正确设置。根据系统的仿真模型,专家通常手动进行调整。此过程出现了两个问题。首先,专家需要熟练,并且仍然可能无法找到最佳的参数化。其次,由于模型中的模型不正确,模拟模型的性能可能无法传递到现实世界应用。通过这一贡献,我们在工业铣削过程中证明了贝叶斯优化如何自动化调整过程并有助于解决上述问题。通过使用任意分布的模型植物不匹配来扰动模拟来确保强大的参数化。目的是最大程度地减少预期的积分参考跟踪误差,并确保可接受的最坏情况行为,同时保持实时能力。这些言语要求被转化为约束的随机混合构成黑盒优化问题。在CNC加工中心的仿真研究中,开发了两级最小型贝叶斯优化程序,并将其与基准算法进行了比较。展示了如何使用贝叶斯优化获得的经验绩效模型来分析和可视化结果。结果表明,仅使用标称模型用于控制器综合的情况下的性能优越。优化的参数化显着改善了初始手工调整的参数化。
Control algorithms such as model predictive control (MPC) and state estimators rely on a number of different parameters. The performance of the closed loop usually depends on the correct setting of these parameters. Tuning is often done manually by experts based on a simulation model of the system. Two problems arise with this procedure. Firstly, experts need to be skilled and still may not be able to find the optimal parametrization. Secondly, the performance of the simulation model might not be able to be carried over to the real world application due to model inaccuracies within the simulation. With this contribution, we demonstrate on an industrial milling process how Bayesian optimization can automate the tuning process and help to solve the mentioned problems. Robust parametrization is ensured by perturbing the simulation with arbitrarily distributed model plant mismatches. The objective is to minimize the expected integral reference tracking error, guaranteeing acceptable worst case behavior while maintaining real-time capability. These verbal requirements are translated into a constrained stochastic mixed-integer black-box optimization problem. A two stage min-max-type Bayesian optimization procedure is developed and compared to benchmark algorithms in a simulation study of a CNC machining center. It is showcased how the empirical performance model obtained through Bayesian optimization can be used to analyze and visualize the results. Results indicate superior performance over the case where only the nominal model is used for controller synthesis. The optimized parametrization improves the initial hand-tuned parametrization notably.