论文标题

小组的模块化同构问题 - 重新审视Eick的算法

The Modular Isomorphism Problem for small groups -- revisiting Eick's algorithm

论文作者

Margolis, L., Moede, T.

论文摘要

我们研究了B. eick描述的算法的改进,研究小阶的组的模块化同构问题(MIP)。我们的进步允许确定$ i(kg)/i(kg)^m $的商品,而无需先计算完整的增强理想$ i(kg)$。它使我们能够验证MIP对订单$ 3^7 $的组有一个正面答案,并大大减少需要检查订单组$ 5^6 $的案例。我们进一步提供了观察Bagiński的证据,并为Bleher,Kimmerle,Roggenkamp和Wursthorn的问题提供了负面答案。

We study the Modular Isomorphism Problem (MIP) for groups of small order based on an improvement of an algorithm described by B. Eick. Our improvement allows to determine quotients $I(kG)/I(kG)^m$ of the augmentation ideal without first computing the full augmentation ideal $I(kG)$. It allows us to verify that the MIP has a positive answer for groups of order $3^7$ and to significantly reduce the cases that need to be checked for groups of order $5^6$. We further provide a proof for an observation of Bagiński and provide a negative answer to a question of Bleher, Kimmerle, Roggenkamp and Wursthorn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源