论文标题

动荡的辐射扩散和动荡的牛顿冷却

Turbulent radiative diffusion and turbulent Newtonian cooling

论文作者

Brandenburg, Axel, Das, Upasana

论文摘要

辐射转运在恒星大气中起着重要作用,但是湍流的影响被其他效果(例如分层)掩盖。使用强迫湍流的辐射流体动力学模拟,我们确定了在光学厚和薄的状态下不同波数的正弦大规模温度温度扰动的衰减速率。增加波数会增加两种状态下的衰减速率,但是这种效应远小于被动标量的通常湍流扩散,在小波数中增加了二次的次数。通过在光学薄极限中增强的牛顿冷却过程,湍流的衰减很好地描述了,发现与波数伯尔的平方根成比例较弱。在光学较厚的极限中,对于湍流的能量携带波数的波数的湍流衰变增加较陡,但朝着较大的波数朝着较大的波数水平。在存在湍流的情况下,典型的冷却时间与湍流周转时间相当。我们观察到,在光学薄和厚的情况下,温度需要很长时间才能达到平衡,但是在前者中,温度将较小的规模结构保留了更长的时间。

Radiation transport plays important roles in stellar atmospheres, but the effects of turbulence are being obscured by other effects such as stratification. Using radiative hydrodynamic simulations of forced turbulence, we determine the decay rates of sinusoidal large-scale temperature perturbations of different wavenumbers in the optically thick and thin regimes. Increasing the wavenumber increases the rate of decay in both regimes, but this effect is much weaker than for the usual turbulent diffusion of passive scalars, where the increase is quadratic for small wavenumbers. The turbulent decay is well described by an enhanced Newtonian cooling process in the optically thin limit, which is found to show a weak increase proportional to the square root of the wavenumber. In the optically thick limit, the increase in turbulent decay is somewhat steeper for wavenumbers below the energy-carrying wavenumber of the turbulence, but levels off toward larger wavenumbers. In the presence of turbulence, the typical cooling time is comparable to the turbulent turnover time. We observe that the temperature takes a long time to reach equilibrium in both the optically thin and thick cases, but in the former, the temperature retains smaller scale structures for longer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源