论文标题
玻璃形成液体中的基于能量景观的跨界温度
An energy-landscape-based crossover temperature in glass-forming liquids
论文作者
论文摘要
超冷液体中温度尺度的系统鉴定是理解这些液体的基础玻璃特性以及后者的形成历史依赖性的关键,这是一项艰巨的任务。在这里,我们使用11个不同的计算机玻璃格式的计算机模拟,研究了在温度$ t $下的平衡液体配置及其基本固有状态之间颗粒平方位移的统计数据$ΔR^2 $。我们表明,$Δr^2 $的相对波动在$ t $中是非单调的,其位置定义了交叉温度$ t _ {\ small {\ mathsf {x}}} $。因此,$ t _ {\ small {\ mathsf {x}}} $在跌落能量景观的过程中标记了最大异质性的点,从温度$ t $ t $的平衡液态开始,落后于其基本的固有状态。我们将$ t _ {\ Small {\ Mathsf {X}}} $提取,用于11台使用的计算机眼镜,从四面体玻璃到包装软弹性球体,并证明了其在同一脚步上将不同眼镜的弹性特性的实用性。有趣的是,我们进一步表明,$ t _ {\ small {\ MathSf {x}}} $标记了平均$ \langleΔr^2 \ rangle $的两个不同方案之间的交叉,高温方案是$ \ \langleδr^2 \rangleΔr^rangle^rangle $ scales y langle $ scales your y y y y y y y y y y y y y y y y y y y y y a c $ t^0.5} $ $ \langleδr^2 \ rangle $缩放大约为$ t^{1.3} $。讨论了进一步的研究指示。
The systematic identification of temperature scales in supercooled liquids that are key to understanding those liquids' underlying glass properties, and the latter's formation-history dependence, is a challenging task. Here we study the statistics of particles' squared displacements $δr^2$ between equilibrium liquid configurations at temperature $T$, and their underlying inherent states, using computer simulations of 11 different computer-glass-formers. We show that the relative fluctuations of $δr^2$ are nonmonotonic in $T$, exhibiting a maximum whose location defines the crossover temperature $T_{\small{\mathsf{X}}}$. Therefore, $T_{\small{\mathsf{X}}}$ marks the point of maximal heterogeneity during the process of tumbling down the energy landscape, starting from an equilibrium liquid state at temperature $T$, down to its underlying inherent state. We extract $T_{\small{\mathsf{X}}}$ for the 11 employed computer glasses, ranging from tetrahedral glasses to packings of soft elastic spheres, and demonstrate its usefulness in putting the elastic properties of different glasses on the same footing. Interestingly, we further show that $T_{\small{\mathsf{X}}}$ marks the crossover between two distinct regimes of the mean $\langleδr^2\rangle$: a high temperature regime in which $\langleδr^2\rangle$ scales approximately as $T^{0.5}$, and a deeply-supercooled regime in which $\langleδr^2\rangle$ scales approximately as $T^{1.3}$. Further research directions are discussed.