论文标题
Fornberg-Whitham方程的孤立波的存在和衰减
The existence and decay of solitary waves for the Fornberg-Whitham equation
论文作者
论文摘要
在本文中,我们考虑了福nberg-whitham方程,并且通过使用最小化原理可以找到一系列孤立波解,其中相关的惩罚函数和浓度 - 触觉在我们的证明中起着关键作用。此外,我们还证明,当速度波C大于1时,孤立解决方案的家族是轨道稳定的,呈指数衰减。
In this paper, we consider the Fornberg-Whitham equation and a family of solitary wave solutions is found by using minimization principle, where a related penalization function and the concentration-compactness lemma play a key role in our proof. Besides, we also prove that the family of solitary solutions is orbital stable and decay exponentially when speed wave c is bigger than 1.