论文标题

使用时空的未来预测对象跟踪

Object Tracking Using Spatio-Temporal Future Prediction

论文作者

Liu, Yuan, Li, Ruoteng, Tan, Robby T., Cheng, Yu, Sui, Xiubao

论文摘要

闭塞是一个长期存在的问题,它导致许多现代跟踪方法错误。在本文中,我们通过从其过去轨迹中利用目标对象的当前和未来可能位置来解决遮挡问题。为了实现这一目标,我们引入了一种基于学习的跟踪方法,该方法考虑了背景运动建模和轨迹预测。我们的轨迹预测模块根据对象的过去轨迹预测目标对象在当前和未来帧中的位置。由于在输入视频中,目标对象的轨迹不仅受对象运动的影响,而且还受摄像头运动的影响,我们的后台运动模块估计了相机运动。因此,可以使对象的轨迹独立于它。要在基于外观的跟踪器和轨迹预测之间动态切换,我们采用了一个可以评估跟踪预测的良好网络,并且我们使用评估得分来在基于外观的跟踪器的预测和基于轨迹的预测之间进行选择。全面的评估表明,所提出的方法在常用的跟踪基准上设置了新的最新性能。

Occlusion is a long-standing problem that causes many modern tracking methods to be erroneous. In this paper, we address the occlusion problem by exploiting the current and future possible locations of the target object from its past trajectory. To achieve this, we introduce a learning-based tracking method that takes into account background motion modeling and trajectory prediction. Our trajectory prediction module predicts the target object's locations in the current and future frames based on the object's past trajectory. Since, in the input video, the target object's trajectory is not only affected by the object motion but also the camera motion, our background motion module estimates the camera motion. So that the object's trajectory can be made independent from it. To dynamically switch between the appearance-based tracker and the trajectory prediction, we employ a network that can assess how good a tracking prediction is, and we use the assessment scores to choose between the appearance-based tracker's prediction and the trajectory-based prediction. Comprehensive evaluations show that the proposed method sets a new state-of-the-art performance on commonly used tracking benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源