论文标题
具有稀疏参数的神经功能模块:一种动态方法,可以跨层集成信息
Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers
论文作者
论文摘要
前馈神经网络由一系列层组成,其中每层对上一层的信息进行了一些处理。这种方法的一个缺点是每个层(或模块,由于多个模块可以并行操作)的任务是处理整个隐藏状态,而不是状态的特定部分,这与该模块最相关。仅在少数输入变量上操作的方法是大多数编程语言的重要组成部分,并且可以改善模块化和代码可重复使用性。我们提出的方法神经功能模块(NFM)旨在将相同的结构能力引入深度学习。在结合自上而下的反馈和自下而上反馈的馈送网络中,大多数工作都仅限于分类问题。我们工作的关键贡献是将注意力,稀疏性,自上而下和自下而上的反馈结合在一起,并在灵活的算法中结合起来,在我们所展示的时,该算法可以在加强学习的背景下改善标准分类,跨域概括,生成建模和学习表征的结果。
Feed-forward neural networks consist of a sequence of layers, in which each layer performs some processing on the information from the previous layer. A downside to this approach is that each layer (or module, as multiple modules can operate in parallel) is tasked with processing the entire hidden state, rather than a particular part of the state which is most relevant for that module. Methods which only operate on a small number of input variables are an essential part of most programming languages, and they allow for improved modularity and code re-usability. Our proposed method, Neural Function Modules (NFM), aims to introduce the same structural capability into deep learning. Most of the work in the context of feed-forward networks combining top-down and bottom-up feedback is limited to classification problems. The key contribution of our work is to combine attention, sparsity, top-down and bottom-up feedback, in a flexible algorithm which, as we show, improves the results in standard classification, out-of-domain generalization, generative modeling, and learning representations in the context of reinforcement learning.