论文标题
高斯推论的基本线性代数问题
Fundamental Linear Algebra Problem of Gaussian Inference
论文作者
论文摘要
许多试图将后部近似为高斯分布的贝叶斯推理技术的基础是基本的线性代数问题,必须解决协方差的平均值和关键条目。即使真实的后验不是高斯(例如,在非线性测量函数的情况下),我们也可以使用各种方案,这些方案在每次迭代中反复解决该线性代数问题。在大多数情况下,问题不是是否存在解决此问题的解决方案,而是我们如何利用特定问题的结构有效地找到它。我们的贡献是清楚地陈述高斯推论(Flapogi)的基本线性代数问题,并提供了Takahashi等人未知结果的新颖表现(使用Kronecker代数)。 (1973年)可以解决协方差矩阵的关键条目。我们首先提供一个全局解决方案,然后提供一个本地版本,该版本可以使用并行计算的代理集合之间的本地消息实现。与信仰传播相反,我们的本地方案可以保证在平均值和所需的协方差数量中融合到全球解决方案,即使基础因子图是循环的。在同步更新的情况下,我们提供了收敛所需的迭代次数的界限。与信念传播相比,这种保证的融合是由循环的其他存储,计算和通信链路的代价。但是,我们展示了如何仅使用本地信息自动构建它们。
Underlying many Bayesian inference techniques that seek to approximate the posterior as a Gaussian distribution is a fundamental linear algebra problem that must be solved for both the mean and key entries of the covariance. Even when the true posterior is not Gaussian (e.g., in the case of nonlinear measurement functions) we can use variational schemes that repeatedly solve this linear algebra problem at each iteration. In most cases, the question is not whether a solution to this problem exists, but rather how we can exploit problem-specific structure to find it efficiently. Our contribution is to clearly state the Fundamental Linear Algebra Problem of Gaussian Inference (FLAPOGI) and to provide a novel presentation (using Kronecker algebra) of the not-so-well-known result of Takahashi et al. (1973) that makes it possible to solve for key entries of the covariance matrix. We first provide a global solution and then a local version that can be implemented using local message passing amongst a collection of agents calculating in parallel. Contrary to belief propagation, our local scheme is guaranteed to converge in both the mean and desired covariance quantities to the global solution even when the underlying factor graph is loopy; in the case of synchronous updates, we provide a bound on the number of iterations required for convergence. Compared to belief propagation, this guaranteed convergence comes at the cost of additional storage, calculations, and communication links in the case of loops; however, we show how these can be automatically constructed on the fly using only local information.