论文标题

体积:用于医疗容量超级分辨率的轻质平行网络

VolumeNet: A Lightweight Parallel Network for Super-Resolution of Medical Volumetric Data

论文作者

Li, Yinhao, Iwamoto, Yutaro, Lin, Lanfen, Xu, Rui, Chen, Yen-Wei

论文摘要

基于深度学习的超分辨率(SR)技术通常在计算机视野中取得了出色的性能。最近,已经证明,用于医学体积数据的三维(3D)SR比传统的二维(2D)处理提供了更好的视觉结果。但是,由于参数数量众多和少量训练样本,加深和扩大3D网络显着增加了训练难度。因此,我们提出了使用平行连接称为ParallelNet的医疗体积数据的SR的3D卷积神经网络(CNN)。我们基于组卷积和特征聚合来构建平行连接结构,以构建一个3D CNN,该3D CNN尽可能宽,几乎没有参数。结果,该模型通过更大的接受场彻底了解了更多的特征地图。此外,为了进一步提高准确性,我们提出了一个有效的Parallelnet(称为体积)的版本,该版本使用所提出的称为“队列模块的轻巧构建模块”来减少参数的数量并深化并行网络。与大多数基于深度卷积的轻量级CNN不同,队列模块主要使用可分开的2D跨渠道卷积构建。结果,可以显着降低网络参数和计算复杂性的数量,同时由于完整的通道融合而保持准确性。实验结果表明,与最先进的方法相比,所提出的体积可显着减少模型参数的数量,并达到高精度结果。

Deep learning-based super-resolution (SR) techniques have generally achieved excellent performance in the computer vision field. Recently, it has been proven that three-dimensional (3D) SR for medical volumetric data delivers better visual results than conventional two-dimensional (2D) processing. However, deepening and widening 3D networks increases training difficulty significantly due to the large number of parameters and small number of training samples. Thus, we propose a 3D convolutional neural network (CNN) for SR of medical volumetric data called ParallelNet using parallel connections. We construct a parallel connection structure based on the group convolution and feature aggregation to build a 3D CNN that is as wide as possible with few parameters. As a result, the model thoroughly learns more feature maps with larger receptive fields. In addition, to further improve accuracy, we present an efficient version of ParallelNet (called VolumeNet), which reduces the number of parameters and deepens ParallelNet using a proposed lightweight building block module called the Queue module. Unlike most lightweight CNNs based on depthwise convolutions, the Queue module is primarily constructed using separable 2D cross-channel convolutions. As a result, the number of network parameters and computational complexity can be reduced significantly while maintaining accuracy due to full channel fusion. Experimental results demonstrate that the proposed VolumeNet significantly reduces the number of model parameters and achieves high precision results compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源