论文标题
深层supproumar网络用于提取数据摘要
Deep Submodular Networks for Extractive Data Summarization
论文作者
论文摘要
由于其能够学习复杂的特征交互和表示能力,因此深层模型在汇总问题(例如文档,视频和图像)中变得越来越普遍。但是,它们并未建模诸如多样性,表示和覆盖范围之类的特征,这对于摘要任务也非常重要。另一方面,由于其回报率降低,因此函数自然会建模这些特征。大多数用于建模和学习的方法下函数的方法都依赖于非常简单的模型,例如下函数的加权混合物。不幸的是,这些模型仅了解不同的下函数功能(例如多样性,表示或重要性)的相对重要性,但无法学习更复杂的功能表示,这通常是最先进的性能所必需的。我们提出了深层suppeructular网络(DSN),这是一个端到端的学习框架,促进学习更复杂的功能和更丰富的功能,精心制作,以更好地建模摘要的各个方面。 DSN框架可用于学习适合从头开始的摘要的功能。我们证明了DSN在通用和查询的图像收集摘要上的实用性,并显示出对最先进的显着改善。特别是,我们表明,使用架子特征的DSN优于简单的混合模型。其次,我们还表明,仅在DSN中使用四个端到端学习中的四个suplodular函数与最先进的混合模型相当,具有手工制作的594个组件集,并且优于图像收集摘要的其他方法。
Deep Models are increasingly becoming prevalent in summarization problems (e.g. document, video and images) due to their ability to learn complex feature interactions and representations. However, they do not model characteristics such as diversity, representation, and coverage, which are also very important for summarization tasks. On the other hand, submodular functions naturally model these characteristics because of their diminishing returns property. Most approaches for modelling and learning submodular functions rely on very simple models, such as weighted mixtures of submodular functions. Unfortunately, these models only learn the relative importance of the different submodular functions (such as diversity, representation or importance), but cannot learn more complex feature representations, which are often required for state-of-the-art performance. We propose Deep Submodular Networks (DSN), an end-to-end learning framework that facilitates the learning of more complex features and richer functions, crafted for better modelling of all aspects of summarization. The DSN framework can be used to learn features appropriate for summarization from scratch. We demonstrate the utility of DSNs on both generic and query focused image-collection summarization, and show significant improvement over the state-of-the-art. In particular, we show that DSNs outperform simple mixture models using off the shelf features. Secondly, we also show that just using four submodular functions in a DSN with end-to-end learning performs comparably to the state-of-the-art mixture model with a hand-crafted set of 594 components and outperforms other methods for image collection summarization.