论文标题
二进制生物医学图像分割的低精度模型
Ensembling Low Precision Models for Binary Biomedical Image Segmentation
论文作者
论文摘要
对解剖区域(例如船只或医学图像中的小病变)的分割仍然是一个困难的问题,通常会通过专家的手动输入来解决。这项任务的主要挑战之一是前景(正)区域的外观可能类似于背景(负)区域。结果,许多自动分割算法倾向于表现出不对称的错误,通常产生的假阳性比假否定性更多。在本文中,我们旨在利用这种不对称性,并以很高的召回方式训练各种模型的合奏,同时牺牲其精度。我们的核心思想很简单:低精度和高召回模型的多样化合奏可能会犯不同的假阳性错误(将背景归类为图像不同部分的前景),但是真正的阳性趋势往往是一致的。因此,汇总的假阳性错误将取消,从而为整体产生高性能。我们的策略是一般的,可以使用任何分割模型应用。在三种不同的应用中(颈部CT血管造影术中的颈动脉分割,心血管MRI中的心肌分割以及大脑MRI中的多发性硬化病变细分),我们展示了建议的方法如何显着促进基线分割方法的性能。
Segmentation of anatomical regions of interest such as vessels or small lesions in medical images is still a difficult problem that is often tackled with manual input by an expert. One of the major challenges for this task is that the appearance of foreground (positive) regions can be similar to background (negative) regions. As a result, many automatic segmentation algorithms tend to exhibit asymmetric errors, typically producing more false positives than false negatives. In this paper, we aim to leverage this asymmetry and train a diverse ensemble of models with very high recall, while sacrificing their precision. Our core idea is straightforward: A diverse ensemble of low precision and high recall models are likely to make different false positive errors (classifying background as foreground in different parts of the image), but the true positives will tend to be consistent. Thus, in aggregate the false positive errors will cancel out, yielding high performance for the ensemble. Our strategy is general and can be applied with any segmentation model. In three different applications (carotid artery segmentation in a neck CT angiography, myocardium segmentation in a cardiovascular MRI and multiple sclerosis lesion segmentation in a brain MRI), we show how the proposed approach can significantly boost the performance of a baseline segmentation method.