论文标题

关于布鲁内尔运营商界限的新估计

New Estimates on the bounds of Brunel's operator

论文作者

Assani, I., Hallyburton, R. S., McMahon, S., Schmidt, S., Schoone, C.

论文摘要

我们研究了功能$ψ(x)= \ frac {1- \ sqrt {1-x}} {x} $的泰勒系列功能的系数扩展,其中brunel operator $ a \ equiv a \ equiv a(t)$被定义为$ t $ t $ t $ t $ t $ t $ t $ t $ t $。我们证明了有关$ n \ in \ mathbb {n} $的$ψ^n $的泰勒系数的几个新的精确估计。我们应用这些估计值提供了一个基本证明,即对于任何卑鄙的(不一定是正面运算符)$ x $上的均值$ t $,brunel运算符$ a(t):x \ to x $是有能力的,可以满足$ \ sup_ {n \ in \ sup_ {n \ in \ mathbbb {n}}}}}} \ | n(a^n-i^n> a^n> a^a^n>}) <\ infty $(等效地,$ a(t)$是RITT操作员)。在途中,我们提供了A. Brunel和R. Emilion在\ cite {Brunel}中宣布的结果的具体细节。

We study the coefficients of the Taylor series expansion of powers of the function $ψ(x)=\frac{1-\sqrt{1-x}}{x}$, where the Brunel operator $A\equiv A(T)$ is defined as $ψ(T)$ for any mean-bounded $T$. We prove several new precise estimates regarding the Taylor coefficients of $ψ^n$ for $n\in\mathbb{N}$. We apply these estimates to give an elementary proof that for any mean-bounded, not necessarily positive operator $T$ on a Banach space $X$, the Brunel operator $A(T):X\to X$ is power-bounded and satisfies $\sup_{n\in\mathbb{N}} \|n(A^n-A^{n+1})\| < \infty$ (equivalently, $A(T)$ is a Ritt operator). Along the way we provide specific details of results announced by A. Brunel and R. Emilion in \cite{Brunel}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源