论文标题

使用语言模型嵌入在知识库上回答的问题

Question Answering over Knowledge Base using Language Model Embeddings

论文作者

Japa, Sai Sharath, Banafsheh, Rekabdar

论文摘要

知识库代表有关世界的事实,通常以某种形式的集体本体论,而不是隐含地嵌入程序代码中,就像传统的计算机程序一样。尽管知识库的增长迅速,但它构成了从中检索信息的挑战。知识基础问题回答是从知识库中提取大量知识的有前途的方法之一。与Web搜索不同,关于知识库的问题回答给出了准确,简洁的结果,前提是可以理解自然语言问题并精确地映射到知识库中的答案。但是,一些现有的基于嵌入的方法用于知识基础问题回答系统忽略了问题与知识库之间的微妙相关性(例如,实体类型,关系路径和上下文),而词汇问题不足。在本文中,我们专注于使用预先训练的语言模型来解决知识基础问题回答任务。首先,我们将BERT基础未基于最初的实验。我们从知识基础到问问题到知识库的答案方面,通过双向注意力基础进行了双向关注机制,进一步微调了这些嵌入。我们的方法基于一个简单的卷积神经网络体系结构,具有多头注意机制,可以在多个方面动态地表示问问题。我们的实验结果表明,BERT预训练的语言模型的有效性和优越性在知识库上与其他众所周知的嵌入方法相比,在知识基础上进行了答案系统的有效性和优势。

Knowledge Base, represents facts about the world, often in some form of subsumption ontology, rather than implicitly, embedded in procedural code, the way a conventional computer program does. While there is a rapid growth in knowledge bases, it poses a challenge of retrieving information from them. Knowledge Base Question Answering is one of the promising approaches for extracting substantial knowledge from Knowledge Bases. Unlike web search, Question Answering over a knowledge base gives accurate and concise results, provided that natural language questions can be understood and mapped precisely to an answer in the knowledge base. However, some of the existing embedding-based methods for knowledge base question answering systems ignore the subtle correlation between the question and the Knowledge Base (e.g., entity types, relation paths, and context) and suffer from the Out Of Vocabulary problem. In this paper, we focused on using a pre-trained language model for the Knowledge Base Question Answering task. Firstly, we used Bert base uncased for the initial experiments. We further fine-tuned these embeddings with a two-way attention mechanism from the knowledge base to the asked question and from the asked question to the knowledge base answer aspects. Our method is based on a simple Convolutional Neural Network architecture with a Multi-Head Attention mechanism to represent the asked question dynamically in multiple aspects. Our experimental results show the effectiveness and the superiority of the Bert pre-trained language model embeddings for question answering systems on knowledge bases over other well-known embedding methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源