论文标题
使用缩放属性来检测财务时间序列的相关变化:一种新的视觉警告工具
The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool
论文作者
论文摘要
对于参数$ Q $的各种值,使用时间依赖的广义HURST指数(GHE)(GHE)(GHE)(GHE)(GHE)(GHE)(GHE)(GHE)进行了多标记的动态演变。使用$ H_Q $,我们引入了一种新的视觉方法,以算法检测基础复杂时间序列的缩放缩放的关键变化。该方法涉及在特定时间实例上的多阶段程度,由变更点分析方法计算的多标准趋势以及对结果的统计意义的严格评估。使用此算法,我们在不同的$ H_Q $时间序列的时间共同进化中确定了特定模式。这些GHE模式以统计上的稳健方式区分,不仅在遵守和多标记的时间段之间,而且在不同类型的多标准之间:对称多标准(M)和不对称的多识别(a)。我们将视觉方法应用于包括四个股票市场指数的每日近距离价格的时间序列:两个主要标准(S \&P〜500和Nikkei)和两个外围设备(雅典证券交易所一般指数和bombay-sensex)。结果表明,多阶段的时间随时间而变化很大:强大的多阶段行为的时间段和审议行为的时间段是互换的,而从锻炼到多识别行为的过渡发生在关键市场事件(例如股票市场泡沫)之前发生。此外,在关键的股票市场时代时会出现特定的不对称多标准模式,并提供有关市场状况的有用信息。特别是,它们可以用作动荡的市场时期的“指纹”,并为即将到来的股市“泡沫”提供警告信号。根据实际事件之前观察到的模式,应用的视觉方法似乎还可以区分外源和内源性股票市场危机。
The dynamical evolution of multiscaling in financial time series is investigated using time-dependent Generalized Hurst Exponents (GHE), $H_q$, for various values of the parameter $q$. Using $H_q$, we introduce a new visual methodology to algorithmically detect critical changes in the scaling of the underlying complex time-series. The methodology involves the degree of multiscaling at a particular time instance, the multiscaling trend which is calculated by the Change-Point Analysis method, and a rigorous evaluation of the statistical significance of the results. Using this algorithm, we have identified particular patterns in the temporal co-evolution of the different $H_q$ time-series. These GHE patterns, distinguish in a statistically robust way, not only between time periods of uniscaling and multiscaling, but also among different types of multiscaling: symmetric multiscaling (M) and asymmetric multiscaling (A). We apply the visual methodology to time-series comprising of daily close prices of four stock market indices: two major ones (S\&P~500 and NIKKEI) and two peripheral ones (Athens Stock Exchange general Index and Bombay-SENSEX). Results show that multiscaling varies greatly with time: time periods of strong multiscaling behavior and time periods of uniscaling behavior are interchanged while transitions from uniscaling to multiscaling behavior occur before critical market events, such as stock market bubbles. Moreover, particular asymmetric multiscaling patterns appear during critical stock market eras and provide useful information about market conditions. In particular, they can be used as 'fingerprints' of a turbulent market period as well as provide warning signals for an upcoming stock market 'bubble'. The applied visual methodology also appears to distinguish between exogenous and endogenous stock market crises, based on the observed patterns before the actual events.