论文标题
线性形式
Linear Forms in Polylogarithms
论文作者
论文摘要
令$ r,\,m $为正整数。令$ x $为$ 0 \ le x <1 $的理性号码。考虑$φ_s(x,z)= \ displayStyle \ sum_ {k = 0}^{\ infty} \ frac {z^{k+1}} {{(k+x+x+x+x+x+1)}^s} $ s $ s $ - $ s-th lerch功能$ s = 1,2,2,2,2,2,2,2,2,2,\ cdots,r $。当$ x = 0 $时,这是一个polygarithmic函数。令$α_1,\ cdots,α_m$在理性数字字段上是成对的任意程度的不同代数数,$ 0 <|α_j| <1 \ 1 \,\,\,\,(1 \ leq j \ leq m)$。在本文中,我们显示了包含$ \ mathbb {q}(α_1,\ cdots,α_m)$的代数数字字段的线性独立性的标准:$+1 $数字:$φ_1(x,α_1)$,$ $+1 $ 1 $数字: $φ_1(x,α_2)$,$φ_2(x,α_2),$ $ \ cdots,φ_r(x,α_2),\ cdots,\ cdots,φ_1(x,α_m)$,$φ_2($φ_2)这是第一个结果,它为在几个不同的代数点上的LERCH函数值的线性独立性提供了足够的条件,不一定位于有理数字段中,也不在二次假想字段中。我们提供了完整的证明,并提供了[10]中宣布的主要定理的改进和定量陈述,并详细介绍了Hermite类型的非散布的Wronskian。
Let $r, \,m$ be positive integers. Let $x$ be a rational number with $0 \le x <1$. Consider $Φ_s(x,z) =\displaystyle\sum_{k=0}^{\infty}\frac{z^{k+1}}{{(k+x+1)}^s}$ the $s$-th Lerch function with $s=1, 2, \cdots, r$. When $x=0$, this is a polylogarithmic function. Let $α_1, \cdots, α_m$ be pairwise distinct algebraic numbers of arbitrary degree over the rational number field, with $0<|α_j|<1 \,\,\,(1\leq j \leq m)$. In this article, we show a criterion for the linear independence, over an algebraic number field containing $\mathbb{Q}(α_1, \cdots, α_m)$, of all the $rm+1$ numbers : $Φ_1(x,α_1)$, $Φ_2(x,α_1), $ $\cdots , Φ_r(x,α_1)$, $Φ_1(x,α_2)$, $Φ_2(x,α_2), $ $\cdots , Φ_r(x,α_2), \cdots, \cdots, Φ_1(x,α_m)$, $Φ_2(x,α_m)$, $\cdots , Φ_r(x,α_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the Lerch functions at several distinct algebraic points, not necessarily lying in the rational number field nor in quadratic imaginary fields. We give a complete proof with refinements and quantitative statements of the main theorem announced in [10], together with a proof in detail on the non-vanishing Wronskian of Hermite type.