论文标题
基于张量的内在子空间表示学习,用于多视图集群
Tensor-based Intrinsic Subspace Representation Learning for Multi-view Clustering
论文作者
论文摘要
作为热门研究主题,在过去几年中提出了许多多视图聚类方法。然而,大多数现有算法仅将共识信息在不同的观点中考虑到集群。实际上,它可能会阻碍现实生活中的多视图聚类性能,因为不同的视图通常包含各种统计属性。为了解决这个问题,我们提出了一种基于张张量的内在子空间表示学习(TISRL),用于本文多视图集群。具体而言,提出保留分解的等级首先是为了有效处理不同观点中包含的各种统计信息。然后,为了实现固有的子空间表示,我们的方法还使用了基于张量的基于基于低升量的张量约束。可以看出,不同观点中包含的特定信息由保留分解的等级进行充分研究,并且多视图数据的高阶相关性也通过低级别张量约束来挖掘。可以通过增强的Lagrangian乘数交替方向最小化算法来优化目标函数。九个常用现实世界多视频数据集的实验结果说明了TISRL的优越性。
As a hot research topic, many multi-view clustering approaches are proposed over the past few years. Nevertheless, most existing algorithms merely take the consensus information among different views into consideration for clustering. Actually, it may hinder the multi-view clustering performance in real-life applications, since different views usually contain diverse statistic properties. To address this problem, we propose a novel Tensor-based Intrinsic Subspace Representation Learning (TISRL) for multi-view clustering in this paper. Concretely, the rank preserving decomposition is proposed firstly to effectively deal with the diverse statistic information contained in different views. Then, to achieve the intrinsic subspace representation, the tensor-singular value decomposition based low-rank tensor constraint is also utilized in our method. It can be seen that specific information contained in different views is fully investigated by the rank preserving decomposition, and the high-order correlations of multi-view data are also mined by the low-rank tensor constraint. The objective function can be optimized by an augmented Lagrangian multiplier based alternating direction minimization algorithm. Experimental results on nine common used real-world multi-view datasets illustrate the superiority of TISRL.