论文标题
通过对称保留注意力网络的对称性置换多重生事件重建
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks
论文作者
论文摘要
在大型强子对撞机上大量生产的顶级夸克,具有复杂的检测器签名,需要特殊的重建技术。最常见的衰减模式是“全射流”频道,导致6月份的最终状态,由于可能的排列数量大量,因此在$ PP $碰撞中特别难以重建。我们使用广义注意机制基于神经网络提出了一种新的问题,我们称之为对称性保留注意力网络(SPA-NET)。我们训练一个这样的网络,以明确地识别每个顶级夸克的衰减产品,而没有组合爆炸作为该技术的力量的一个例子。这种方法大大优于现有的最新方法,正确地分配了所有喷气机,以$ 6 $ -JET $ 6 $ -JET,$ 87.8%的$ 87.8%$ 72.6%的$ 82.6%和82.6%的$ 82.6%和82.6%的$ 82.6%。
Top quarks, produced in large numbers at the Large Hadron Collider, have a complex detector signature and require special reconstruction techniques. The most common decay mode, the "all-jet" channel, results in a 6-jet final state which is particularly difficult to reconstruct in $pp$ collisions due to the large number of permutations possible. We present a novel approach to this class of problem, based on neural networks using a generalized attention mechanism, that we call Symmetry Preserving Attention Networks (SPA-Net). We train one such network to identify the decay products of each top quark unambiguously and without combinatorial explosion as an example of the power of this technique.This approach significantly outperforms existing state-of-the-art methods, correctly assigning all jets in $93.0%$ of $6$-jet, $87.8%$ of $7$-jet, and $82.6%$ of $\geq 8$-jet events respectively.