论文标题

Pontryagin的最大原理的量子最佳控制简介

Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control

论文作者

Boscain, U., Sigalotti, M., Sugny, D.

论文摘要

最佳控制理论是一种强大的数学工具,自1950年代以来,它已经知道快速发展,主要用于工程应用。最近,它已成为一种广泛使用的方法,可以通过高效控制量子动力学来改善量子技术中的过程性能。该教程旨在提供对最佳控制理论的关键概念的介绍,该理论可用于量子控制或相关领域的物理学家和工程师。在严格陈述之前,直观地引入了不同的数学结果。本教程描述了最佳控制理论的现代方面,特别关注蓬蒂拉金的最大原理,这是在没有实验反馈的情况下确定开环控制定律的主要工具。讨论解决最佳控制问题的不同步骤,然后再继续进行更高级的主题,例如存在最佳解决方案或不同类型的极端类型的定义,即正常,异常和单数。该教程涵盖了各种量子控制问题,并描述了适合最佳控制的数学配方。描述了用于高维量子系统的最大原理和基于梯度的优化算法之间的连接。详细介绍了不同低维量子系统的最佳解决方案,说明了如何以实用的方式应用数学工具。

Optimal Control Theory is a powerful mathematical tool, which has known a rapid development since the 1950s, mainly for engineering applications. More recently, it has become a widely used method to improve process performance in quantum technologies by means of highly efficient control of quantum dynamics. This tutorial aims at providing an introduction to key concepts of optimal control theory which is accessible to physicists and engineers working in quantum control or in related fields. The different mathematical results are introduced intuitively, before being rigorously stated. This tutorial describes modern aspects of optimal control theory, with a particular focus on the Pontryagin Maximum Principle, which is the main tool for determining open-loop control laws without experimental feedback. The different steps to solve an optimal control problem are discussed, before moving on to more advanced topics such as the existence of optimal solutions or the definition of the different types of extremals, namely normal, abnormal, and singular. The tutorial covers various quantum control issues and describes their mathematical formulation suitable for optimal control. The connection between the Pontryagin Maximum Principle and gradient-based optimization algorithms used for high-dimensional quantum systems is described. The optimal solution of different low-dimensional quantum systems is presented in detail, illustrating how the mathematical tools are applied in a practical way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源