论文标题

原球盘的内部灰尘区域-II。辐射压力和圆盘风驱动的灰尘动态

Inner dusty regions of protoplanetary discs -- II. Dust dynamics driven by radiation pressure and disc winds

论文作者

Vinković, Dejan, Čemeljić, Miljenko

论文摘要

我们使用重力,气阻力和辐射压力的力探索原行星盘最热部分中的灰尘流。我们的主要重点是灰尘圆盘的光学薄区域,其中灰尘暴露于最极端的加热条件和动态扰动:光学较厚的碟片和内部灰尘升华区的表面。我们利用了两个数值剧烈的研究领域的结果。首先是来自吸积盘的Mangetohydrynalical(MHD)模拟的气速和密度分布的准平台解决方案。这对于对灰尘移动的更现实的气体阻力影响至关重要。第二个是高分辨率尘埃辐射转移的光学深度结构。此步骤对于更好地理解光盘中的灰尘分布至关重要。我们描述了将这些解决方案纳入灰尘动力学方程的数值方法。我们使用它来整合不同的圆盘风模型下的灰尘轨迹,并显示谷物最终如何被困在从简单积聚到恒星到流向外盘区域的流动。我们演示了辐射压力如何在此过程中起关键作用之一,而不可忽视。它侵蚀了尘土飞扬的圆盘表面,降低其高度,抵抗尘埃吸入到恒星上,并有助于碟中风将谷物向外推动。晶粒尺寸和孔隙率的变化显着影响结果,较小和多孔的谷物受椎间盘风和辐射压力的影响更大。

We explore dust flow in the hottest parts of protoplanetary discs using the forces of gravity, gas drag and radiation pressure. Our main focus is on the optically thin regions of dusty disc, where the dust is exposed to the most extreme heating conditions and dynamical perturbations: the surface of optically thick disc and the inner dust sublimation zone. We utilise results from two numerically strenuous fields of research. The first is the quasi-stationary solutions on gas velocity and density distributions from mangetohydrodynamical (MHD) simulations of accretion discs. This is critical for implementing a more realistic gas drag impact on dust movements. The second is the optical depth structure from a high-resolution dust radiation transfer. This step is critical for a better understanding of dust distribution within the disc. We describe a numerical method that incorporates these solutions into the dust dynamics equations. We use this to integrate dust trajectories under different disc wind models and show how grains end up trapped in flows that range from simple accretion onto the star to outflows into outer disc regions. We demonstrate how the radiation pressure force plays one of the key roles in this process and cannot be ignored. It erodes the dusty disc surface, reduces its height, resists dust accretion onto the star, and helps the disc wind in pushing grains outwards. The changes in grain size and porosity significantly affect the results, with smaller and porous grains being influenced more strongly by the disc wind and radiation pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源