论文标题

计算机安全中的机器学习

Dos and Don'ts of Machine Learning in Computer Security

论文作者

Arp, Daniel, Quiring, Erwin, Pendlebury, Feargus, Warnecke, Alexander, Pierazzi, Fabio, Wressnegger, Christian, Cavallaro, Lorenzo, Rieck, Konrad

论文摘要

随着计算系统的加工能力的增长和大量数据集的可用性,机器学习算法在许多不同领域都取得了重大突破。这种开发影响了计算机安全性,在基于学习的安全系统上产生了一系列工作,例如用于恶意软件检测,漏洞发现和二进制代码分析。尽管潜力很大,但安全性的机器学习仍容易出现细微的陷阱,这些陷阱破坏了其性能和渲染基于学习的系统,可能不适合安全任务和实际部署。在本文中,我们用批判性的眼睛看这个问题。首先,我们确定了基于学习的安全系统的设计,实施和评估中的常见陷阱。我们对过去10年中顶级安全会议的30篇论文进行了研究,证实这些陷阱在当前的安全文献中是广泛的。在经验分析中,我们进一步证明了个人陷阱如何导致不切实际的绩效和解释,从而阻碍了对当前安全问题的理解。作为一种补救措施,我们提出了可行的建议,以支持研究人员在可能的情况下避免或减轻陷阱。此外,我们确定在安全性学习机器学习并为进一步研究提供方向时确定开放问题。

With the growing processing power of computing systems and the increasing availability of massive datasets, machine learning algorithms have led to major breakthroughs in many different areas. This development has influenced computer security, spawning a series of work on learning-based security systems, such as for malware detection, vulnerability discovery, and binary code analysis. Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance and render learning-based systems potentially unsuitable for security tasks and practical deployment. In this paper, we look at this problem with critical eyes. First, we identify common pitfalls in the design, implementation, and evaluation of learning-based security systems. We conduct a study of 30 papers from top-tier security conferences within the past 10 years, confirming that these pitfalls are widespread in the current security literature. In an empirical analysis, we further demonstrate how individual pitfalls can lead to unrealistic performance and interpretations, obstructing the understanding of the security problem at hand. As a remedy, we propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible. Furthermore, we identify open problems when applying machine learning in security and provide directions for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源