论文标题
集成的光子插入器,用于处理八度跨度微孔子频率梳子
Integrated photonic interposers for processing octave-spanning microresonator frequency combs
论文作者
论文摘要
Microcomb-在微孔子中生成的光频率梳子在过去十年中已大大提高,并且对于频率计量,导航,光谱,电信,电信和微波光子学方面的应用是有利的。至关重要的是,Microcombs提供了完全集成的微型光学系统的前景,其成本,大小,重量和功率的前所未有。但是,使用散装自由空间和光纤组件来处理微型群,将这个目标始终阻碍,从而将形式限制在台式上。在这里,我们通过引入集成的光子插入器体系结构来处理微型COMB并替换离散组件来解决这一挑战。以1550 nm左右的电信C波段中的基于微重的光学频率合成为目标应用,我们开发了一个插入器架构,该体系结构收集,路由和接口构成构成合成器的光子芯片和异质集成的设备之间的八度光信号。我们已经在流行的氮化硅光子平台中实现了微栓的八度跨度光谱滤波,并确认了插座器各个元素的必要性能。此外,我们表明,可以通过八度带宽绝热的逃生偶联偶联的氮化硅插头插图层与相对较薄的氮化硅插孔层集成到相对较薄的硝酸硅插孔层所需的厚氮化硅。我们的插入器架构解决了对芯片微型梳理处理以成功化微梳系统的迫切需求。随着微型群岛和集成设备的发展,我们的方法可以很容易地适应基于光原子时钟以及高精度导航和光谱法的其他计量级应用。
Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics. Crucially, microcombs offer the prospect of fully integrated miniaturized optical systems with unprecedented reductions in cost, size, weight, and power. However, this goal has been consistently hindered by the use of bulk free-space and fiber-optic components to process microcombs, limiting form factors to the table-top. Here, we address this challenge by introducing an integrated photonics interposer architecture to process microcombs and replace discrete components. Taking microcomb-based optical frequency synthesis in the telecom C-band around 1550 nm as our target application, we develop an interposer architecture that collects, routes, and interfaces octave-wide optical signals between photonic chiplets and heterogeneously integrated devices that constitute the synthesizer. We have implemented the octave spanning spectral filtering of a microcomb, central to the interposer, in the popular silicon nitride photonic platform, and have confirmed the requisite performance of the individual elements of the interposer. Moreover, we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling, indicating a path towards future system-level consolidation. Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems. As microcombs and integrated devices evolve, our approach can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.