论文标题
来自自旋反向带对的几何霍尔效应和动量空间浆果曲率
Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs
论文作者
论文摘要
当纳米含量时,具有标量旋转手性(SSC)的非稳态纹理与巡回电子耦合时,它们以一种质量曲线为准,称为浆果曲率,称为浆果曲率,以类比为相对论的旋转旋转式旋转式耦合(SOC)。所得的移动电荷载体的挠度称为几何(或拓扑)大厅效应。先前的实验研究将该信号建模为在量子力学阶段的影响下波袋的真实空间运动。相比之下,我们在这里比较了由于SOC和SSC引起的Bloch波的修改及其能量分散。使用倾斜的Pyrochlore Ferromagnet ND $ _2 $ MO $ $ _2 $ o $ _7 $作为型号化合物,我们的运输实验和第一原则计算表明,SOC公正地将电子带与相同或相反的旋转混合,而SSC对相对的旋转频带对更有效。
When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.