论文标题
通过深层复发模型从电阻抗中推断出呼吸和循环参数
Inferring respiratory and circulatory parameters from electrical impedance tomography with deep recurrent models
论文作者
论文摘要
电阻抗断层扫描(EIT)是一种非侵入性成像方式,可以连续评估不同器官区域生物阻抗的变化。其最常见的生物医学应用之一是监测在重症监护病房接受治疗的重症患者中的区域通风分布。在这项工作中,我们提出了一项原理研究,该研究证明了人们如何使用以端到端方式训练的深度学习模型从EIT图像序列重建同步测量的呼吸或循环参数。我们证明,一个人可以准确地推断出绝对体积,绝对流动,归一化气道压力以及在某些限制中,即使是仅来自EIT信号的归一化动脉血压,这种方式可以概括地看不见的患者而没有事先校准。作为具有直接临床相关性的前景,我们进一步证明了通过EIT和绝对气道压力组合重建绝对转肺压力的可行性,这是一种有可能替代食管压力侵入性测量的方法。通过这些结果,我们希望刺激基于在这项工作中提出的框架上的进一步研究。
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows a continuous assessment of changes in regional bioimpedance of different organs. One of its most common biomedical applications is monitoring regional ventilation distribution in critically ill patients treated in intensive care units. In this work, we put forward a proof-of-principle study that demonstrates how one can reconstruct synchronously measured respiratory or circulatory parameters from the EIT image sequence using a deep learning model trained in an end-to-end fashion. We demonstrate that one can accurately infer absolute volume, absolute flow, normalized airway pressure and within certain limitations even the normalized arterial blood pressure from the EIT signal alone, in a way that generalizes to unseen patients without prior calibration. As an outlook with direct clinical relevance, we furthermore demonstrate the feasibility of reconstructing the absolute transpulmonary pressure from a combination of EIT and absolute airway pressure, as a way to potentially replace the invasive measurement of esophageal pressure. With these results, we hope to stimulate further studies building on the framework put forward in this work.