论文标题

关于多元高斯过程的评论

Remarks on multivariate Gaussian Process

论文作者

Chen, Zexun, Fan, Jun, Wang, Kuo

论文摘要

高斯流程占据了现代统计学和概率理论的领先地位之一,因为它们的重要性和丰富的成果。高斯过程的常见使用是与与估计,检测以及许多统计或机器学习模型有关的问题有关。随着高斯流程应用程序的快速发展,有必要巩固矢量值随机过程的基本面,特别是多元高斯过程,这是许多具有多个相关响应的应用问题的重要理论。在本文中,我们提出了基于矢量值函数空间高斯措施的多元高斯过程的精确定义,并提供了证明。此外,引入了多元高斯过程的几种基本特性,例如严格的平稳性和独立性。我们进一步推出了包括ItôLemma在内的多元布朗运动,作为多元高斯过程的特殊情况,并简要介绍了多元高斯过程回归,作为用于多出输出预测问题的有用统计学习方法。

Gaussian processes occupy one of the leading places in modern statistics and probability theory due to their importance and a wealth of strong results. The common use of Gaussian processes is in connection with problems related to estimation, detection, and many statistical or machine learning models. With the fast development of Gaussian process applications, it is necessary to consolidate the fundamentals of vector-valued stochastic processes, in particular multivariate Gaussian processes, which is the essential theory for many applied problems with multiple correlated responses. In this paper, we propose a precise definition of multivariate Gaussian processes based on Gaussian measures on vector-valued function spaces, and provide an existence proof. In addition, several fundamental properties of multivariate Gaussian processes, such as strict stationarity and independence, are introduced. We further derive multivariate Brownian motion including Itô lemma as a special case of a multivariate Gaussian process, and present a brief introduction to multivariate Gaussian process regression as a useful statistical learning method for multi-output prediction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源