论文标题
用吸收的cantor花束,整个地图
Criniferous entire maps with absorbing Cantor bouquets
论文作者
论文摘要
众所周知,对于Eremenko-Lyubich类$ \ MATHCAL {B} $中的许多先验全部功能,每个逃逸点最终都可以通过逃逸点的曲线连接到Infinity。在这种情况下,我们说这些功能是脆性的。在本文中,我们将此结果扩展到$ \ Mathcal {b} $中的新一类地图。此外,我们表明,如果一张地图属于此类,则其朱莉娅集(Julia Set)包含一个cantor花束。换句话说,它是$ \ mathbb {c} $的子集的一个子集,直晶均匀地同构。
It is known that, for many transcendental entire functions in the Eremenko-Lyubich class $\mathcal{B}$, every escaping point can eventually be connected to infinity by a curve of escaping points. When this is the case, we say that the functions are criniferous. In this paper, we extend this result to a new class of maps in $\mathcal{B}$. Furthermore, we show that if a map belongs to this class, then its Julia set contains a Cantor bouquet; in other words, it is a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush.