论文标题
分层配对的通道融合网络用于街道场景变化检测
Hierarchical Paired Channel Fusion Network for Street Scene Change Detection
论文作者
论文摘要
街道场景变更检测(SSCD)旨在在不同时间捕获的给定街景图对对之间的变化区域,这在计算机视觉社区中是一项重要但艰巨的任务。解决SSCD任务的直观方法是融合提取的图像特征对,然后直接测量用于生成更改图的差异零件。因此,SSCD任务的关键是设计一种有效的功能融合方法,该方法可以提高相应的更改图的准确性。为此,我们提出了一种新型的分层配对通道融合网络(HPCFNET),该网络使用配对特征通道的自适应融合。具体而言,给定图像对的特征是由暹罗卷积神经网络(SCNN)共同提取的,并通过在多个特征级别探索通道对的融合来层次结合。此外,基于观察到场景变化的分布是多种多样的观察,我们进一步提出了一种多部分特征学习(MPFL)策略来检测各种变化。根据MPFL策略,我们的框架采用了一种新颖的方法来适应场景的规模和位置多样性变化区域。在三个公共数据集(即PCD,VL-CMU-CD和CDNET2014)上进行了广泛的实验表明,所提出的框架实现了卓越的性能,以优于其他最先进的方法,并具有相当大的利润。
Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map. Therefore, the key for the SSCD task is to design an effective feature fusion method that can improve the accuracy of the corresponding change maps. To this end, we present a novel Hierarchical Paired Channel Fusion Network (HPCFNet), which utilizes the adaptive fusion of paired feature channels. Specifically, the features of a given image pair are jointly extracted by a Siamese Convolutional Neural Network (SCNN) and hierarchically combined by exploring the fusion of channel pairs at multiple feature levels. In addition, based on the observation that the distribution of scene changes is diverse, we further propose a Multi-Part Feature Learning (MPFL) strategy to detect diverse changes. Based on the MPFL strategy, our framework achieves a novel approach to adapt to the scale and location diversities of the scene change regions. Extensive experiments on three public datasets (i.e., PCD, VL-CMU-CD and CDnet2014) demonstrate that the proposed framework achieves superior performance which outperforms other state-of-the-art methods with a considerable margin.