论文标题

在内容吸引音乐推荐中利用音乐偏好的结构

Leveraging the structure of musical preference in content-aware music recommendation

论文作者

Magron, Paul, Févotte, Cédric

论文摘要

最先进的音乐推荐系统基于协作过滤,该系统可预测用户从听力习惯和与其他用户个人资料的相似之处中的相似之处。这些方法对歌曲内容不可知,因此面临着一个寒冷的问题:如果没有聆听历史记录,他们就无法推荐新颖的歌曲。为了解决此问题,内容感知的建议包含有关可用于推荐新项目的歌曲的信息。大多数属于此类别的方法都利用用户注销的标签,声学功能或深度学习的功能。因此,这些内容功能没有明确的音乐含义,因此从音乐偏好的角度来看,它们不一定与之相关。在这项工作中,我们提议相反,利用音乐心理学领域的音乐偏好模型。从低水平的声学特征中,我们提取三个因素(唤醒,价和深度),这些因素已显示为描述音乐品味。然后,我们将它们集成到一个协作过滤框架中,以进行内容吸引音乐推荐。在大规模数据上进行的实验表明,这种方法能够解决冷启动问题,同时使用紧凑而有意义的音乐特征集。

State-of-the-art music recommendation systems are based on collaborative filtering, which predicts a user's interest from his listening habits and similarities with other users' profiles. These approaches are agnostic to the song content, and therefore face the cold-start problem: they cannot recommend novel songs without listening history. To tackle this issue, content-aware recommendation incorporates information about the songs that can be used for recommending new items. Most methods falling in this category exploit either user-annotated tags, acoustic features or deeply-learned features. Consequently, these content features do not have a clear musical meaning, thus they are not necessarily relevant from a musical preference perspective. In this work, we propose instead to leverage a model of musical preference which originates from the field of music psychology. From low-level acoustic features we extract three factors (arousal, valence and depth), which have been shown appropriate for describing musical taste. Then we integrate those into a collaborative filtering framework for content-aware music recommendation. Experiments conducted on large-scale data show that this approach is able to address the cold-start problem, while using a compact and meaningful set of musical features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源