论文标题
$α$ -sr $ _2 $ CRO $ _4 $中磁和轨道订购的起源
Origin of the Magnetic and Orbital ordering in $α$-Sr$_2$CrO$_4$
论文作者
论文摘要
通过K $ _2 $ nif $ _4 $结构的最近实验进展的动机,我们研究了磁和轨道订购的$α$ -sr $ _2 $ CRO $ $ _4 $。使用第一原理计算,首先,我们得出了一个三轨哈伯德模型,该模型在费米级附近重现了{\ it Ab intib}频段结构。 $ t_ {2g} $ orbitals在$α$ -sr $ _2 $ cro $ _4 $中的唯一反向分裂,带有$ 3D^2 $电子配置的Cr $^{4+} $氧化状态的$ 3D^2 $电子配置,可以在此材料中打开Orbital Orbital Orbital的可能性。使用真实空间的Hartree-fock用于多轨系统,我们为二维化合物$α$ -sr $ _2 $ CRO $ $ _4 $构建了基本相图。我们在相图的稳健区域中发现了稳定的铁磁,抗铁磁,抗铁磁性和交错的轨道条纹顺序。此外,使用密度矩阵重新归一化组方法,用于两腿梯子,具有$α$ -sr $ _2 $ CRO $ $ _4 $的现实跳跃参数,我们探索用于实验相关交互参数的磁性和轨道订购。同样,我们发现在中度至大型哈伯德相互作用强度下,抗铁磁旋转顺序的明确特征以及抗纤维 - 轨道订购。我们还探索了用兰开斯(Lanczos)探索状态的轨道分辨密度,预测了与实验一致的化合物$α$ -sr $ _2 $ _4 $ _4 $的绝缘行为。最后,基于轨道之间的层次结构提供了对结果的直观理解,并以$ d_ {xy} $驱动旋转顺序,而电子排斥和在$ d_ {xz} $和$ d_ {yz} $ obbitals内部运动的有效一维的一维尺寸。
Motivated by recent experimental progress in transition metal oxides with the K$_2$NiF$_4$ structure, we investigate the magnetic and orbital ordering in $α$-Sr$_2$CrO$_4$. Using first principles calculations, first we derive a three-orbital Hubbard model, which reproduces the {\it ab initio} band structure near the Fermi level. The unique reverse splitting of $t_{2g}$ orbitals in $α$-Sr$_2$CrO$_4$, with the $3d^2$ electronic configuration for the Cr$^{4+}$ oxidation state, opens up the possibility of orbital ordering in this material. Using real-space Hartree-Fock for multi-orbital systems, we constructed the ground-state phase diagram for the two-dimensional compound $α$-Sr$_2$CrO$_4$. We found stable ferromagnetic, antiferromagnetic, antiferro-orbital, and staggered orbital stripe ordering in robust regions of the phase diagram. Furthermore, using the density matrix renormalization group method for two-leg ladders with the realistic hopping parameters of $α$-Sr$_2$CrO$_4$, we explore magnetic and orbital ordering for experimentally relevant interaction parameters. Again, we find a clear signature of antiferromagnetic spin ordering along with antiferro-orbital ordering at moderate to large Hubbard interaction strength. We also explore the orbital-resolved density of states with Lanczos, predicting insulating behavior for the compound $α$-Sr$_2$CrO$_4$, in agreement with experiments. Finally, an intuitive understanding of the results is provided based on a hierarchy between orbitals, with $d_{xy}$ driving the spin order, while electronic repulsion and the effective one dimensionality of the movement within the $d_{xz}$ and $d_{yz}$ orbitals driving the orbital order.