论文标题
高维回归模型的本地变化
Localizing Changes in High-Dimensional Regression Models
论文作者
论文摘要
本文解决了具有分段恒定回归系数的高维线性回归模型中变化点的问题。我们开发了一种动态的编程方法来估计变化点的位置,即即使维度,回归系数的稀疏性,两个连续更改点之间的时间间距以及两个连续回归系数的差异之间的时间间距也可以与样品大小相变。此外,我们设计了一个计算效率的完善过程,该过程可证明减少了变更点的初步估计的定位误差。我们在定位误差上证明了Minimax的下限,该误差几乎与我们方法的本地化误差相匹配,并表明我们施加的信噪状况本质上是基于信息理论参数的最弱的。广泛的数值结果支持我们的理论发现,对实际空气质量数据的实验揭示了算法未使用的历史信息支持的变化点。
This paper addresses the problem of localizing change points in high-dimensional linear regression models with piecewise constant regression coefficients. We develop a dynamic programming approach to estimate the locations of the change points whose performance improves upon the current state-of-the-art, even as the dimensionality, the sparsity of the regression coefficients, the temporal spacing between two consecutive change points, and the magnitude of the difference of two consecutive regression coefficient vectors are allowed to vary with the sample size. Furthermore, we devise a computationally-efficient refinement procedure that provably reduces the localization error of preliminary estimates of the change points. We demonstrate minimax lower bounds on the localization error that nearly match the upper bound on the localization error of our methodology and show that the signal-to-noise condition we impose is essentially the weakest possible based on information-theoretic arguments. Extensive numerical results support our theoretical findings, and experiments on real air quality data reveal change points supported by historical information not used by the algorithm.