论文标题
用于K壳X射线光发射和吸收光谱的Ab-Initio核心孔模拟的螺母和螺栓
The Nuts and Bolts of Ab-Initio Core-Hole Simulations for K-shell X-Ray Photoemission and Absorption Spectra
论文作者
论文摘要
X射线光发射(XPS)和近边缘X射线吸收精细结构(NEXAFS)光谱在研究材料和表面的结构和电子结构中起着重要作用。 Ab-Initio模拟为解释包含重叠特征的复杂光谱的解释提供了至关重要的支持。基于密度功能理论的近似核心孔模拟方法,例如Delta-sef-consistent-field($δ$ SCF)方法或过渡势(TP)方法,可广泛用于预测有机分子的K-shell XPS和Nexafs特征,以可靠的精确成本和可靠的计算机计算。我们介绍了$δ$ scf和过渡势方法($δ$ ip-tp)的变体的数值和技术细节,以模拟XPS和NEXAFS过渡。在气相,散装晶体和金属有机界面中,使用示例性分子,我们系统地评估实际仿真选择如何影响模拟的稳定性和准确性。其中包括选择交换相关功能,基集,核心孔定位方法以及使用周期性边界条件。我们特别关注的是系统的选择或定期描述系统的定期描述,以及定期计算中的虚假电荷效应如何影响模拟结果。为了使该领域的从业人员受益,我们讨论了明智的默认选择,方法的局限性以及未来的前景。
X-ray photoemission (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy play an important role in investigating the structure and electronic structure of materials and surfaces. Ab-initio simulations provide crucial support for the interpretation of complex spectra containing overlapping signatures. Approximate core-hole simulation methods based on Density Functional Theory such as the Delta-Self-Consistent-Field ($Δ$SCF) method or the transition potential (TP) method are widely used to predict K-shell XPS and NEXAFS signatures of organic molecules, inorganic materials and metal-organic interfaces at reliable accuracy and affordable computational cost. We present the numerical and technical details of our variants of the $Δ$SCF and transition potential method (coined $Δ$IP-TP) to simulate XPS and NEXAFS transitions. Using exemplary molecules in gas-phase, in bulk crystals, and at metal-organic interfaces, we systematically assess how practical simulation choices affect the stability and accuracy of simulations. These include the choice of exchange-correlation functional, basis set, the method of core-hole localization, and the use of periodic boundary conditions. We particularly focus on the choice of aperiodic or periodic description of systems and how spurious charge effects in periodic calculations affect the simulation outcomes. For the benefit of practitioners in the field, we discuss sensible default choices, limitations of the methods, and future prospects.