论文标题
最小的无分区组
Minimal partition-free groups
论文作者
论文摘要
令G为有限的组。 G的集合p = {h1,...,hr},如果G的每个非身份元素属于一个HI,则r> 1的r> 1是G的非平凡分区,而较大的1 <= i <= r。我们称之为不承认任何非平民分区的G组为无分区组。在本文中,我们研究了一个无分区的G组,其所有适当的非环体亚组都接受了非平凡的分区。
Let G be a finite group. A collection P={H1, ..., Hr} of subgroups of G, where r > 1, is said a non-trivial partition of G if every non-identity element of G belongs to one and only one Hi, for some 1 <=i<=r. We call a group G that does not admit any non-trivial partition a partition-free group. In this paper, we study a partition-free group G whose all proper non-cyclic subgroups admit non-trivial partitions.