论文标题
Yang-Baxter和Boost:分开差异
Yang-Baxter and the Boost: splitting the difference
论文作者
论文摘要
在本文中,我们使用基于\ cite {deleeuw:2019zsi}的自旋链增强操作员的方法继续对Yang-Baxter方程的常规解决方案进行分类。我们提供有关如何找到所有非差异形式解决方案的详细信息,并将我们的方法应用于二,三和四的局部希尔伯特空间的旋转链。我们对所有$ 16 \ times 16 $解决方案进行分类,这些解决方案显示出$ \ Mathfrak {su}(2)\ oplus \ mathfrak {su}(2)$对称,其中包括一维Hubbard模型和$ S $ -S $ -MATRIX的$ {\ rm ads} \ rm ads} _5 \ sug sus sus s s s s s s sum smme smma smme smme smme smme smme smme smme smme smme}在所有情况下,我们都会发现Yang-Baxter方程的有趣新颖解决方案。
In this paper we continue our classification of regular solutions of the Yang-Baxter equation using the method based on the spin chain boost operator developed in \cite{deLeeuw:2019zsi}. We provide details on how to find all non-difference form solutions and apply our method to spin chains with local Hilbert space of dimensions two, three and four. We classify all $16\times 16$ solutions which exhibit $\mathfrak{su}(2)\oplus \mathfrak{su}(2)$ symmetry, which include the one-dimensional Hubbard model and the $S$-matrix of the ${\rm AdS}_5 \times {\rm S}^5$ superstring sigma model. In all cases we find interesting novel solutions of the Yang-Baxter equation.